MECH 401 Mechanical Design Applications Master Notes of Dr. Marcia K. O'Malley

Spring 2008 Dr. D. M. McStravick Rice University

Course Information

- Meeting time
 - T-Th 8:00 9:15
 - DH 1064
- Prerequisites
 - MECH 311 or CIVI 300
- Texts
 - Mechanical Engineering Design
 - by Budynas & Nisbett (8th edition)
- Goals
 - Provide design skills to support MECH 407/408 projects
 - Understand the application of engineering analysis to common machine elements
 - Enhance your ability to solve practical design problems using free body diagrams, Mohr's circle, beam analysis, etc.

- D. M. McStravick, PhD, P.E.
 - MEB 224
 - Phone: est. 2427
 - dmcs@rice.edu
 - Office hours:
 - Wednesday 10:30
 -11:30 PM
 - Monday 10:30 –
 - 11:30 AM

Syllabus

- General policies
- (25%) Homework
 - Late homework is not accepted
 - Neatness counts!
- (5%) In-class Quiz on Stress Analysis
- (25%) In-class Fundamentals Test
- (25%) In-class Applications Test
- (20%) Project

Background Comments

- My Background Practical experience in design
- MECH 401 Defining course for Mech Major
 Tools to make your dreams into a reality
- EXPERT WITNESSING All from this course
- TEXT "If I could have only one <u>reference</u> book …"

Overview and introduction of design of machine elements

- Two primary phases of design
 -) Inventive phase creative aspect
 - Engineering phase understanding of physical reality aspect
 - makes a design unique or clever (MECH 407/408)
 - (2) makes a design work
- This course will focus on 2nd aspect, making our designs work

"Understanding of physical reality"

- Theoretical results
- Empirical results
- Theory helps us understand physical phenomena so that we can address design at a fundamental level
- Theory often falls short, however, in describing complex phenomena, so we must use empirical results

Methodology

- Solving machine component problems
 - Step 1
 - Define/understand
 - Step 2
 - Define/synthesize the structure
 - ID interactions
 - Draw diagrams (as a sketch)
 - Step 3
 - Analyze/solve using:
 - Appropriate assumptions
 - Physical laws
 - Relationships
 - Rules
 - Step 4
 - Check is the answer reasonable?

Homework format

- Start each problem on a new page
- One side of sheet only
- Use straight-edge, work neatly
- Known:
 - Problem statement
 - Schematic
 - Given data
 - Material properties
- Find:
 - Concisely state what is to be determined
- Solution:
 - Assumptions
 - Design decisions
 - Equations (make number substitutions last)
 - Comments (when appropriate)

ENGINEERING DISASTERS

Modern Marvels Program

Systems of Units

- Appendix lists units (English, SI), conversion factors, and abbreviations
- Unit
 - A specified amount of a physical quantity by which through comparison another quantity of the same kind is measured
 - Examples?
 - Length, time, temperature
- 2 basic systems of units
 - U.S. customary foot-pound-second system (fps)
 - International System of Units (SI)

Primary Quantities

- Sufficient to conceive of and measure other dimensions
- Examples?
 - Mass
 - Length
 - Time
 - ...

[what/where are the touchstones]

Secondary dimensions

Measured in terms of primary dimensions

Examples?

- Area
- Density
- Velocity
- Viscosity
- ...

SI System of Units (mLt)

- Mass, length, and time
- m kg
- L m
- t s
- F is secondary/derived unit
- F is in Newtons: 1 N ~ 1 apple (**)
- F is defined a la Newton's 3rd law
- F = ma
- 1 N = 1 kg·m/s²

U.S. Customary

- Foot-pound (f)-second (fps)
- Inch-pound-second (ips)
- Not a consistent system of units (Why?)

fps:

- Force pound-force (Derived from a pound mass)
- 1000 lbf = 1 kilopound = 1 kip
- □ For a consistent US customary system use 3rd law
- Derived unit of mass is lbf-s²/ft (slug)

Statistical Considerations

- Dealing with uncertainty
- In engineering nothing is exact (tolerances)

Introduction to reliability engineering

- We cannot assume that all the quantities that we utilize in failure analysis are deterministic quantities
 "We know their values absolutely!"
- In many cases, especially in manufacturing, this is NOT the case
 - A part dimension that is supposed to be 1" in diameter might vary between 0.95 and 1.05 inches due to variation in machining process (tool wear)
- Statistics and random variable methods enable designers to deal with variable quantities
 - Reliability Engineering

Definitions

- Random (stochastic) variable
 - A real-valued set of numbers that result from a random process or are descriptive of a random relationship
- For example, if I were to construct a list of everybody's height in this class...
 - Then height, H, would be considered a random variable

Sample #	${\sf H}$ (height in inches)	
1		
2		
3		
4		

Height example

- Let's say there are 25 people in this class.
- Construct a histogram to represent the data
- If we divide the (# of people) axis by the total number of people sampled, then we have
 - Probability density function (PFD)
 - PDF gives the <u>probability</u> that a random variable will have a certain value
 - Same shape as the histogram

it's been normalized w.r.t. N)

Height example

- If we integrate this "function", we get the cumulative distribution function (cdf) $F(x_i)$
 - Gives the probability (likelihood) that a random variable will be less than or equal to a given value
 - □ For a random variable *x*,

$$\lim_{x\to\infty}F(x)=1$$

For a discrete random variable,

$$F(x_i) = \sum_{x_j \le x_i} f(x_j)$$

Characterizing random variables

- A random variable is not a scalar, but rather a vector
- In this deterministic case, we can say
 - x = 63.5 inches
- This is a scalar, since it has only a single value
- In the stochastic case, we know that the variable x can take on many values
 - □ x = 63.5, 68.7, 62.1, etc
- We define the discrete random variable \bm{x} to be a vector of the samples $x_1,\,x_2,\,\ldots,\,x_n$
 - We refer to x as the variate

- Note, in this sense, a vector can be considered a collection of numbers, not a quantity with direction and magnitude
- It is helpful to have some scalar quantities that characterize the random variable vector
 - Direction and magnitude won't do the trick!

Scalar quantities to characterize x

Mean

$$\hat{\mu} \equiv \frac{x_1 + x_2 + \dots + x_n}{N} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

- A measure of the central value of a distribution
- Standard deviation

$$\hat{\sigma} = \left[\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \hat{\mu})^2\right]^{\frac{1}{2}}$$

- A measure of the dispersion or distribution of data
- Note this is most useful as a comparative measure
 - By itself, it's not particularly useful!
- Some people use 1/N instead of 1/(N-1), but 1/(N-1) typically gives better results for small N
- The notation for mean and standard deviation of a variate are as follows:

$$\mathbf{x} = \left(\hat{\mu}, \hat{\sigma}\right)$$

Example of Mean and Standard Deviation

Example 20-1 p. 963

Example 20-2 p. 964

Reliability Engineering, Cont.

Terminology

- Population
 - The total set of elements in which we are interested
- Sample
 - A randomly selected subset of the total population on which measurements are taken (class vs. US Population)
- Describing the shape of a distribution
 - Uniform

Normal

We'll look at these

- Log Normal
- Weibull

Uniform distribution

- Simplest
- All elements have the same value
- Area equal to 1 implies that all samples in the given range of x have the same value of f(x), where f(x) describes the distribution

Normal distribution

Also called Gaussian distribution

$$f(x) = \frac{1}{\hat{\sigma}\sqrt{2\pi}} e^{\left[-\frac{1}{2}\left(\frac{x-\hat{\mu}}{\hat{\sigma}}\right)^2\right]}$$

Small standard deviation $\begin{pmatrix} n \\ \sigma \end{pmatrix}$

Large standard deviation $\begin{pmatrix} n \\ \sigma \end{pmatrix}$

Notation

- Normal distribution with mean and standard deviation:
- This IS a complete characterization $\mathbf{x} = \mathbf{N}(\hat{\mu}, \hat{\sigma})$
- CDF of Normal (Gaussian) Distribution cannot be found in closed form [Use table A -10; Example 20-3 p.966]
- Generalized description of normal CDF:

• Note:

$$\mathbf{Z} = \frac{\mathbf{x} - \hat{\mu}}{\hat{\sigma}}$$
 $F(x) = \int_{-\infty}^{x} f(u) du$

Linear Regression

- Obtaining a best-fit to a set of data points
- Linear regression when best fit is a straight line
- Correlation coefficient tells you how good the fit is

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Linear Regression Equations

Equation of a line

 $\Box \quad y = mx + b$

Error equation for a point

yi = mi + b + ei

Solving for ei^2 and minimizing ei^2 gives eqns. in m & b Allows solving for m and b of the linear regression line How good is the fit to the data? Use a correlation coefficient r

r=m[^] sx/sy r is between -1-+1 +1 or -1 is perfect correlation m[^] is the linear regression slope Sx is the standard deviation of the x coordinates Sy is the standard deviation of the y coordinates

Materials

- Must always make "things" out of materials
- Must be able to manufacture this "thing"
- Topics first introduced in Materials Science course (MSCI 301)
- How do we determine the properties of a material?
 - Tables
- How were these values determined?
 Generally via destructive testing

Material properties

- Listed in tables
- Statistical variation
- Values listed are minimums
- Best data from testing of prototypes under intended loading conditions

Material parameters

Parameters of interest in material selection for design?

- Strength `
- □ Stiffness > PRIMARY CONCERNS
- Weight
- Toughness
- Conductivity
- Thermal
- Corrosion resistance

Primary parameters of interest in material selection

- Strength
 - Amount of load (or weight, or force) a part can take before breaking or bending
- Stiffness
 - Amount of deflection or deformation for a given load
- Weight
- All of these depend on geometry
 EXTENSIVE values
- We would like to derive results that are independent of size (geometry)
 - INTENSIVE values

Extensive vs. Intensive values

- Extensive
 - Weight (kg)
 - Strength (N)
 - Stiffness (N/m)

- Intensive
 - Density (kg/m³)
 - Yield strength or Ultimate
 Strength (N/m²)
 - Modulus of Elasticity (N/m²)

How do we determine these values?

- Types of quasistatic material testing
 - Tension
 - Compression
 - Bending
 - Torsion

Tensile tests specimens

What is the difference between these specimens?

Mild ductile steel tensile test specimen

Brittle cast iron tensile test specimen

Tensile testing

- Best for general case
- Why?
 - Uniform loading and uniform cross-section generate uniform stress
 - Compression poses stability problems (buckling)
 - Torsion and bending impose non-uniform stress

Other test specimens – Ductile and Brittle

Compression

Bending

Torsion

Stress-Strain (σ - ϵ) Curves

- Point A Proportional limit
- Point B Elastic limit
- Point C Yield point
 - Usually defined by permanent set of $\varepsilon = 0.002$ (0.2% offset)
- For purposes of design, we often assume A~B~C, and call this the yield point
- Slope of O-A = E
 - Young's Modulus
 - Modulus of elasticity
 - Like stiffness
- Point F Onset of failure
- Point G, G' Fracture

Important design considerations

S_y = Yield strength

- It is the stress level...
 - That will result in permanent set
 - At which material undergoes marked decrease in stiffness
 - At which Hooke's Law is no longer valid
- S_u = Ultimate strength
 - Stress level that will result in fracture

3

Ductile vs. Brittle Material Behavior

Remember the Titanic video -- Temperature issue

- Ductile material
 - Sustains significant plastic deformation prior to fracture
- Brittle material
 - No significant plastic deformation before fracture

Ductile vs. Brittle Material Behavior

- The only true means of determining if a material is ductile or brittle is by testing it (tensile test)
- Note: The same alloy can be either ductile or brittle, depending upon temperature and/or how it was formed
- Some general indications of brittle behavior
 - □ Glass, ceramic, and wood
 - Cast ferrous alloys
 - Materials in extreme cold temperatures
 - Also, if you can't find S_y in a handbook (only S_u given)

Fatigue testing – measuring endurance

- Most machines are loaded cyclically
 - Any piece of rotating machinery
- Strength decreases over time
 - "Fatigue strength" depends on number of cycles and the material

- How to test?
 - Use a rotating beam
 - More often vary axial loading over time

Common metals in machine design

Magnesium

- Specific stiffness ~ 25 MPa/(kg/m³)
- Extremely light (~1/5 steel)
- Extremely flammable
- Aluminum (very common)
 - Specific stiffness ~ 26
 - Stiffness-to-weight and strength-to-weight comparable to steel
 - 1/3 stiffness of steel
 - 1/3 density of steel

More metals...

- Gray cast iron
 - Specific stiffness ~ 15
 - Decent strength
 - Used where casting makes sense and weight doesn't matter
 - Gears, engine blocks, brake disks and drums
- Brass, bronze
 - Generally soft
 - Good for bearings (bronze)

More metals...

Titanium

- Specific stiffness ~ 26
- Excellent strength-to-weight
- Non-magnetic
- Non-corrosive (implants)
- Can be cast
- Expensive
- Ductile cast iron
 - Stronger than gray cast iron
 - Heavy-duty gears, automobile door hinges

More metals...

Stainless steel

- Non-magnetic
- Much less corrosive than steel
- Difficult to machine

Steel

- Specific stiffness ~ 27
- Excellent fatigue properties
- Good stiffness-to-weight
- Better alloys have excellent strength-to-weight
 - Chromoly bicycle frames

Comparison of Young's Modulus for various metals

Alloying and Crystal Structure

Question...

- Does all steel have the same strength?
- Does all steel have the same stiffness?
- Strength (S_y, S_u) depends on alloy and state
 Stiffness (E) depends only on metal type
 i.e., E is a property of the metal and does not change with alloy or state

So what affects the strength of a metal?

- Two primary forms
 - Alloying
 - Crystal state

Metal alloys

- Adding certain elements in trace amounts to a metal can significantly change its strength
- Since the alloying elements are present in trace amounts, they don't significantly alter modulus (stiffness) or density

Alloying

Steel – Primary alloying elements:

- Manganese
- Nickel
- Chromium
- Molybdenum
- Vanadium
- The alloy is identified by AISI/SAE or ASTM numbering system
 - AISI American Iron and Steel Institute
 - SAE Society of Automotive Engineering
 - ASTM American Society for Testing and Materials

Altering crystal state

- Crystal state of steel can be altered by heat treatment or cold working
- Quenching
 - Heat to very high (~1400°F) temp and cool rather suddenly by immersion in water
 - Creates crystal structure called martensite which is extremely strong but brittle

More methods...

Tempering

- Reheat to moderate temperature and cool slowly
- Adds ductility at the expense of decreased strength
- Annealing
 - Resets the alloy to original low strength, ductile state
 - Reheat alloy above critical temperature and allow to cool slowly

More methods...

Normalizing

- Between tempering and annealing
- Cold working
 - Another means of increasing strength at the expense of ductility

Hot working

 Reheating as the metal is deformed to maintain ductility

Question

 If you're going to have a piece of metal machined, would you rather use a cold worked or hot worked metal?

- Used to define alloying elements and carbon content
- 1st two digits
 - Indicate principal alloying elements
- Last 2 digits
 - Indicate amount of carbon present
 - In 100ths of a percent

Plain carbon steel

- 1st digit 1
- 2^{nd} digit 0
- No alloys other than carbon are present
- AISI 1005-1030: Low-carbon steels (*)
- AISI 1035-1055: Medium-carbon steels
- □ AISI 1060-1085: High-carbon steels
- AISI 11xx series adds sulfur (***)
 - Improves machinability
 - Called free-machining steels
 - Not considered alloys
 - Sulfur does not improve mechanical properties
 - Makes it brittle (Titanic)

- Alloy steels
 - Have various elements added in small quantities
 - Improve material's
 - Strength
 - Hardenability
 - Temperature resistance
 - Corrosion resistance
 - Other...
 - Nickel
 - Improve strength without loss of ductility
 - Enhances case hardenability
 - Molybdenum
 - In combination with nickel and/or chromium
 - Adds hardness
 - Reduces brittleness
 - Increases toughness
 - Other alloys used to achieve specific properties

Tool steels

- Medium- to high- carbon alloy steels
- Especially formulated to give:
 - Very high hardness
 - Wear resistance
 - Sufficient toughness to resist shock loads experienced in machining

Stainless steels

- Alloy steels with at least 10% chromium
- Improved corrosion resistance over plain or alloy steels

Martensitic stainless steels

- 11.5 to 15% Cr and 0.15 to 1.2% C
- Magnetic
- Can be hardened by heat treatment
- Cutlery
- Ferritic stainless steel
 - Over 16% Cr and low C content
 - Magnetic
 - Soft
 - Ductile
 - Not heat treatable
 - Cookware
- Both martensitic and ferritic called 400 series

- Austenitic stainless steel
 - 17 to 25% Cr and 10 to 20% nickel
 - Better corrosion resistance (due to Ni)
 - Nonmagnetic
 - Excellent ductility and toughness
 - Cannot be hardened except by cold working
 - 300 series
- 300 series very weldable
- 400 series less so

Aluminum alloys

Principal alloying elements

- Copper
- Manganese
- Silicon
- Zinc
- Alloys are designated by the Aluminum Association (AA) numbering system

Aluminum alloys, cont.

 Aluminum alloys are also heat-treatable, as designated by the –T classification in the AA numbering system

Aluminum alloys

Wrought-aluminum alloys

- Available in wide variety of stock shapes
 - I-beams, angles, channels, bars, etc
- 1st digit indicates principal alloying element
- Hardness indicated by a suffix containing a letter and up to 3 numbers
- Most commonly available and used in machine design applications:
 - 2000 series
 - 6000 series

Aluminum alloys

2024

- Oldest alloy
- Among the most machinable
- One of the strongest Al alloys
- High fatigue strength
- Poor weldability and formability
- 6061
 - Widely used in structural applications
 - Excellent weldabilty
 - Lower fatigue strength than 2024
 - Easily machined and popular for extrusion
- 7000 series
 - Aircraft aluminum
 - Strongest alloys

Look-up tables for Material properties (in the appendix)

1	2	3	+	5
		TEMPERATI:RE	STRENGTH	STRENGTH.
AISI NO.	TREATMENT	C (F)	MPa (kpsi)	MP3 (kps:)
1030	Q&T*	205 (400)	848 (123)	648 (94)
	Q&T*	315 (600)	8(H) (116)	621 (90)
	Q&T*	425 (800)	731 (106)	579 (84)
	Q&T*	540 (1000)	669 (97)	517 (75)
	Q&T*	650 (12 00)	586 (85)	441 (64)
	Normalized	925 (1700)	521 (75)	345 (50)
	Annealed	870 (1600)	430 (62)	317 (46)
1040	Q&T	205 (400)	779 (113)	593 (86)
	Q&T	425 (800)	758 (110)	552 (80)
	Q&T	650 (1200)	634 (92)	434 (63)
	Normalized	900 (1650)	590 (86)	374 (54)
	Annealed	790 (1450)	519 (75)	353 (51)
1050	Q&T*	205 (400)	1120 (163)	807 (117)
	Q&T*	425 (800)	1090 (158)	793 (115)
	Q&T*	650 (1 200)	717 (104)	538 (78)
	Normalized	900 (1650)	748 (108)	427 (62)
	Annealed	790 (1450)	636 (92)	365 (53)
1060	Q&T	425 (800)	1080 (156)	765 (111)
	Q&T	540 (1000)	965 (140)	669 (97)
	Q&T	650 (1200)	800 (116)	524 (76)
	Normalized	900 (1 650)	776 (112)	421 (61)
	Annealed	790 (14 50)	626 (91)	372 (54)
1095	Q&T	315 (600)	(183)	813 (118)
	Q&T	425 (800)	1210 (176)	772 (112)
	Q&T	540 (1000)	1090 (158)	676 (98)
	Q&T	650 (1200)	896 (130)	552 (80)
	Normalized	900 (1650)	1010 (147)	500 (72)
	Annealed	790 (14 50)	658 (95)	380 (55)
1141	· 0&T	315 (600)	1460 (212)	1280 (186)
••••	O&T	540 (1 000)	896 (130)	765 (111)
4130	O&T*	205 (400)	1630 (236)	1460 (212)
	O&T*	315 (600)	1500 (217)	1380 (200)
	O&T*	425 (800)	1280 (186)	1190 (173)
	O&T*	540 (1000)	1030 (150)	910 (132)
	O&T*	650 (1200)	814 (118)	703 (102)
	Normalized	870 (1600)	670 (97)	436 (63)
	Annealed	865 (1585)	560 (81)	361 (52)
(1LLL	0. ♦ T	205 (400)	(770) (257)	1640 (238)
-11	0.47	315 (600)	(550) (225)	(430 (208)
	V			